If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2+2w-2=120
We move all terms to the left:
w^2+2w-2-(120)=0
We add all the numbers together, and all the variables
w^2+2w-122=0
a = 1; b = 2; c = -122;
Δ = b2-4ac
Δ = 22-4·1·(-122)
Δ = 492
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{492}=\sqrt{4*123}=\sqrt{4}*\sqrt{123}=2\sqrt{123}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{123}}{2*1}=\frac{-2-2\sqrt{123}}{2} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{123}}{2*1}=\frac{-2+2\sqrt{123}}{2} $
| 3y-37=y+37 | | 7y-13=y+47 | | 0.065x+5.509=0.050x+5.500 | | 12x-5+86=128 | | 11=6x | | 10x100=300 | | 5x-30/10+8=54 | | 7w+25=9w+17 | | 12x-5+86=90 | | 6w^2-1w-1=0 | | -6y+4=34 | | 14x+196=420 | | 5t-75=2t+30 | | -5(x-3)-(x+8)=7 | | 8x+15/3=25 | | b+78=2b | | x+56=8x | | c+53=2c | | -4x=-5x+5 | | j+51=24 | | 2(4y-10)+3y=24 | | 18p+-7p+-19p+6p=10 | | c+53=c | | 2x+4+3x+3=x | | 2z-2z+4z=16 | | 2/3w=1 | | X+6=1/2y | | 16x-2=62 | | 17x-12x-x-4x+3x=9 | | 14q=14 | | 3t-55=t+1 | | t+9/t+4=5 |